OPTIMUM MOTION OF A VARIABLE-MASS
POINT WITH AERODYNAMIC FORCES
IN THE UNIFORM CENTRAL
GRAVITATIONAL FIELD

A. I. Kurianov

Head, Division of Flight Dynamics
USSR Academy of Sciences
M oscow

and

V. K. IsaEv

Computing Center
Academy of Sciences
M oscow

The regimes of optimum motion of the variable-mass point in uniform
central field, introduced into the analysis by G. E. Kuzmak, V. K. Isaev,
and B. X. Davidson, are considered on the basis of the maximum prin-
ciple [1]. The features introduced into the optimum programs of the jet
force magnitude and direction control due to the aerodynamic forces are
considered.

Let us consider the orbital motion of the variable-mass point in the
Cartesian coordinate system OXY, where the point O coincides with the
centre of gravity, taking into account the aerodynamic forces effects (the
drag Q@ = C. ¢S and the lift ¥ = C, ¢S, where ¢ = pV?%/2 is the dynamic
pressure).

The problem is treated under the following assumptions:

1. The trajectory of the motion is a quasicircular orbit of the radius

Ray;
2. The drag @ is of opposite direction to the absolute velocity vector

V, the lift ¥ is normal to the velocity vector V (Fig. 1);
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3. The control is accomplished by the variation of the jet force magni-
tude and orientation P;

4, The aerodynamic acceleration components g(R..)n. = Cx ¢*°/M
and g(R,,)n, = C, ¢S/M are the linear functions of V:

g(Rav) = nszV; Q(Rav)n” = B,,,Vl (1)
where
_— CrPVS o _ gypVS
B, = = T const., B, = 9]

The assumption (1) permits the gravitational field to be considered as a
uniform central field, and the projections of the gravitational acceleration
to be written in the form [2]:

2 2
g: = —vzx, Gy = —v'Y, v = ¥—/— = const.

Under this assumption the relation (1) may in particular suggest that
there is considered the problem of the correction (or maintaining) circular
orbit of the vehicle having constant aerodynamic characteristics C; and €',
total fuel consumption for the correcting maneuver being low. In effect for
the motion along the quasicircular orbit we have

r = \/IZ + yz = Rav + AT’ Ar < Ru,v

p(z) = p(Ra) = 5';

p

V = Vu 4+ 02 = Ve + AV, AV &L Vir

Il

where V., is the circular speed (or the velocity of the satellite moving
along the orbit of the radius r = R..). Assuming ', = C? = const.,
C, = C) = const.,, M(t) = M(0) — AM, AM « M(0), from the above
mentioned follows:

C28(p — 8p) (Veir — AV) P C.Sp()V (1) & C28(p + Ap)(Veir + AV)
20 (0) ="M@ = 2(M (0) — AM]

(f,pVS — CgP(an)Veir(an)S t
oM = oM o
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where

M. = uE) - 22
The cited problem may be used as a model for the analysis of more
complex cases.
Using the foregoing assumptions, let us write the equations of the orbital
motion of the variable-mass point with aerodynamic forces:

i = AL::)S_Q — 'z — (Bau + Bp) @)

§ = é"'_Sln__“D - yzy - (B,D - B,,U) (3)
m

T = u, y=u, m = — ow S

Here u, v, z, y are projections of the velocity vector and Cartesian coordi-
nates of the point, m = M(f)/M(0) — nondimensional mass, u; = P({)/
Puax — nondimensional thrust, ¢ angle between the thrust vector and
the 0X — axis,

Pmnx = af

4 = M) ~

where ' = const. — exhaust velocity.
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Figure 1.
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Let us consider Meyer’s problem of determining the maximum of the

linear combinations S = 3~ Cixi(T), Ci = const., composed of the
=1

finite values of the phase vector components x = (u,»,z,y,m) = (x,, ..., Ts),

with the constraint

0<u <1 (5)

imposed on the control.

In accordance with the required maximum principle conditions [1] the
optimum control providing maximum to the functional S is (see, for
example, Refs. 2 and 3):

1for# >0
U =509 = lofor9 <0 ©)
Sinsp=—&, cos;o=—£3 (7)
p p
where
2=p+ 2" o= VPT P
The variables P; (i = u, . . ., m) conjugated by the phase coordinate are
determined by the equations:
P, = — P. + (B.P. — B,P,) ®)
P, = — P, + (B.P, + B,P,) )
¥ 2 r 2 Au.
P. =P, P, =v'P,, P, = — e P (10)

In order to use the relations (5) and (6) and to define the form of the
optimum control we shall find the linear part (8)-(10) of the conjugate
system.

As noted by V. V. Sonin, Egs. (8)-(10) can be written in a more con-
venient form:

.i)u = szu+ VzPu + Bypv =0 (11)

P, = B,P. — B.P, +’P, = 0 (12)
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As a result the corresponding characteristic equation becomes:

(A*— BXx 4+ ) + (AB)2 =0 (13)
or

A= BA+ v+ aB,) (A* — Bx 4+ —0\B,) =0 (14)

The characteristic equation (14) has four various complex roots:

_ B 1 o iBﬁ)* (B,B,y s, Bx Bﬁ]
7\1—1—2:1: 2_\[(0— 4 + B v+ i

B, .\/1 \/(, BiiBﬁ)* (B,B,,)” s Bx:i:B:]
:1:12:{:1 2| F =0 + ~9 —i—v——'———4

(15)

[a—y

According to Egs. (7) and (15) the optimum program of the jet force
orientation is:

¢ = arctan —=—— (16)

where C,,, C,; (i = 1, ..., 4) are constants of integration (of which only
four constants are independent) determined by the solution of the
boundary-value problem.

To simplify the following analysis we shall note that the values of aero-
dynamic acceleration components

Ql~

n, = e ny =
T G, v
where ¢ = M(0) X m(t) X g(R..) is the instantaneous weight of the point
having the mass M(t) at the distance r = R,, from the centre of gravity)
are at least quantities of the first order of smallness. This follows from the
requirement that the assumption (1) on an average is to be held every-
where along the trajectory including the coasting ares. The duration of
the latter may be a quantity of the same order as the period of revolution

of the satellite along the circular orbit of the radius r = R,..
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Taking into account the last statement we shall give some simplified
formulas for calculating the roots with the accuracy to the fifth order of
smallness:

‘\/ 2 2
Ay [n, 4 My 1 -{; (n: + n,)
(17)
. . 2 2 (n.n,)?
Fin, + 1 1+(ﬂz:|:‘n,,)+—4—v
and to the second order of smallness:
Mg = (e F tn, £ i)y (18)

As far as the relations (18) are concerned it should be noted that having
discarded the higher order smalls we have obtained multiple roots of the
characteristic equation (instead of the pairs of closely related roots as it
occurs in the general case).

The last note indicates that the problem is considered near the boundary
of the change of the type of differential equations solution (8)-(10) (the
possibility of secular terms appearance).

Therefore in this case it is necessary to use various approximate presen-
tations of the roots with care.

The last feature is connected with the fact that the lift term is included
in the equation of motion (3); in the alternate case (for B, = 0) the system
of equations (8)—(10) separates into two independent linear subsystems
with conjugate complex roots [i.e., for B, = 0 the secular terms are absent
a priori in the conjugate system solution (8)-(10)].

The P — trajectory form P, = P.(P,) and therefore the type of solu-
tion of the system (8)—(10) make a considerable effect on the optimum
programs of controlling the jet force magnitude and direction.

Let us present Eq. (15) in the form

A= p; + (j=11"-:4) (19)
where because of the closely related complex roots

pi = [n: £ (1 £ e)]v; vi =[x &(1 £ 8)] »;

G=1,...,4). (20)

Here ¢, €; and §,, &, are the smalls of the higher order in comparison with
n. and  respectively.
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Neglecting the smalls of the second order in Eq. (20) and accounting for
the comments about the type of the solution of (8)-(10) we obtain finally :

P =A™ a,(t) sin [ + Vi + ¢:(t)], (¢ =wuvzy (21)

where

ai(t) = 1 + 267w, cos (20t + AV,) + ¢l

—2e, vt i ” .
sin ¢(t) = — & tgw.sLn(t()za,t + AV,)

—2e, 08t ) :
ot = 1+ e tgw;((:(;s (26t + AV,)

Here A;, w;, ¥;, AY,; (i = wuw,r,y) are constants of integration (of which
only four constants are independent).

According to Eq. (21) in a general case P — trajectory presents a slowly
spiralling out path which changes into closed curve for B, = B, = 0 (the
ellipse, circle or portions of two fitting lines). These closed curves present
P — trajectories of motion in the uniform central gravitational field
without aerodynamic forces [2]. The pointed curves are the limited curves
from which (in accordance with the relation (21) the P — trajectory spirals
out (with possible self-intersections) in the case of motion with aero-
dynamic forces present. The degree of spiralling out [according to Eq. (21)]
is determined by the aerodynamic drag value n. while the lift value n,
defines the change of the “frequency’” and the “phase’ shift of the quasi-
periodic function p(t).

Figure 2 shows the typical trend of the function p, z and the correspond-
ing pattern of the optimum control of the thrust magnitude u,(t). Because
of the small n, and n, values the aerodynamic forces effects along the
initial part of the trajectory are not sensible and the features of the opti-
mum program of controlling u,(f) are the same as for the motion in vacuum
[2]. Later on the aerodynamic forces effects accumulate and cause the
breakdown of the former pattern of optimum control and the appearance
of the new qualitative features. The main feature is that the thrust are
duration does not vanish with { — o as for the motion in vacuum, but on
the contrary it may begin to increase starting from some revolution. For
the small values of the parameter A = Pu../M(0) the coasting arc dura-
tion may become 0 in the limit and the thrust cutoff «; might not occur in
future (i.e., the path would terminate by the thrust arc of any high du-
ration).
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Figure 2.
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